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Abstract 

   We present porous electrode theory for the general situation of electrolytes containing mixtures of 

mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes 

composed of primary particles that are porous themselves. The predominantly bimodal distribution of 

pores consists of the interparticle or macroporosity outside the particles through which the ions are 

transported (transport pathways), and the intraparticle or micropores inside the particles, where 

electrostatic double layers (EDLs) are formed. Both types of pores are filled with electrolyte (solvent 

plus ions). For the micropores we make use of a novel modified-Donnan (mD) approach valid for 

strongly overlapped double layers. The mD-model extends the standard Donnan approach in two 

ways: 1. by including a Stern layer in between the electrical charge and the ions in the micropores, 

and 2. by including a chemical attraction energy for the ion to go from the macropores into the 

micropores. This is the first paper where the mD-model is used to model ion transport and 

electrochemical reactions in a porous electrode. Furthermore we investigate the influence of the 

charge transfer kinetics on the chemical charge in the electrode, i.e., a contribution to the electrode 

charge of an origin different from that stemming from the Faradaic reaction itself, e.g. originating from 

carboxylic acid surface groups as exist in activated carbon electrodes. We show that the chemical 

charge depends on the current via a shift in local pH, i.e. "current-induced charge regulation." We 

present results of an example calculation where a divalent cation is reduced to a monovalent ion 

which electro-diffuses out of the electrode.  

 

Introduction 

   Porous electrodes are found throughout electrochemistry, because of enhanced charge storage 

capacities and/or enhanced electrochemical Faradaic transfer rates.1-13 Applications predominantly 

electrochemical in nature include batteries14-16 and fuel cells,17-19 while capacitive effects are most 

important for supercapacitors,20-26 water desalination by (membrane) capacitive deionization,27-43 and 

techniques where energy is harvested in a cyclic manner from the controlled mixing of fresh river 

water and saline sea water.44-48 In these millifluidic flow techniques for desalination and energy 

harvesting, water flows through the space in between two parallel porous electrodes operated at 

different voltage.  

   Capacitive charging and Faradaic charge transfer increasingly occur at the same time in a variety of 

applications, so it is crucial to better understand the nonlinear coupling of these different effects. 

Capacitive effects relate to the structure of the electrostatic double layer (EDL) formed at the 

nanoscale of the electrode/electrolyte interface and thus influence the Faradaic charge transfer rate in 

ways that must be understood. If the products of Faradaic reactions are stored with a locally uniform 
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chemical potential (i.e. without internal transients, such as solid diffusion), the reactions provide an 

effective “pseudo-capacitance” given by the Nernst equation, relating the chemically stored charge to 

the interfacial voltage18. This is the case when a solid product species is stored locally, often in the 

form of nanosized inclusions or clusters. In other situations, Faradaic reactions must be minimized as 

for EDL-supercapacitors and CDI, and thus must again be quantified theoretically. 

   Most previous theoretical work on porous electrode theory has considered only one of these two 

situations, i.e., either capacitive charging or electrochemical charge transfer.1,4,5,14 Furthermore, in 

practically all previous work on porous electrode theory, the EDL structure is not considered in detail, 

and the capacity for charging and/or the electrochemical charge transfer rate is assumed to be a 

(linear) function of the total EDL potential drop from electrode matrix (the electron-conducting phase) 

to the “bulk” electrolyte phase within the transport pathways (macropores) in the electrode.1,4,5,14,24,25 

For electrochemical modeling, the actual charge stored (which depends on position and time) does 

not enter into classical model formulations.1,4,9 However, the electrode charge is important and must 

be part of a self-consistent theory which describes electrode charge as function of position and time. 

Furthermore, in classical formulations the expression for the charge transfer rate does not consider 

the local ion concentrations at the reaction plane (as a start, this plane can be equated to the plane of 

closest-approach for the ions to the interface, i.e., the Stern plane), but considers bulk ion 

concentrations outside the EDL, and takes the potential drop across the full EDL as an 

electrochemical enhancement factor.1,4 In other words, chemical details of the EDL are generally not 

considered. For capacitive charging, classical porous electrode theory (implicitly) applies the 

Helmholtz-model for the structure of the EDL, in which ions of opposite sign as the electrode charge 

are solely responsible for local charge compensation.5,14 There is no role for co-ions when using the 

Helmholtz-approach, as if the transport number into the EDL is set to unity, i.e., the EDL is assumed 

to be perfectly selective for countercharge only.  

   In our previous work we have provided a unified porous electrode theory that describes both 

capacitive charging and electrochemical charge transfer in a self-consistent framework.13 An 

important element in our theory is the structure of the EDL (which will change in time, and is different 

at different positions) which determines the ion-selectivity of the EDL. For instance, in compensating 

the electrode charge, the role of co-ion depletion can be just as important as that of classical counter-

ion adsorption.5,28,37 Another important aspect is that the electrochemical charge transfer rate depends 

on the voltage drop across the inner or compact layer, the Stern layer, with the ion concentration at 

the Stern, or reaction, plane entering the reaction rate equation. This is the classical concept of 

Frumkin, but his own completely general formulation has hardly ever been used in porous electrode 

theory until quite recently, for fixed ion countercharge,17 and for aqueous electrolytes with all ions 

mobile.13  

   In our previous work13 we considered a porous electrode-structure where only macropores had to 

be considered, with the EDL modelled as a volumetrically-distributed excess property for which the 

Gouy-Chapman-Stern (GCS) model was used, valid when the macropore size significantly exceeds 

the Debye length, i.e, the diffuse layer is very thin compared to the typical pore size of the 

macropores. However, for porous electrodes where most of the charge and ion storage occurs inside 
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much smaller micropores, such as most electrodes prepared, e.g., from porous carbon particles, the 

GCS-model cannot be applied. Modifications are possible to consider partial EDL overlap48-51 but 

these models are mathematically more involved when differences in (counter- vs. co-) ion adsorption 

are to be described. Therefore, it is useful to consider the opposite limit of the GCS-model, namely 

that the Debye length is much larger (not smaller) than the typical micropore size.13,41,42,43 In that case 

we can assume that across the micropore the potential is constant (the typical approach in Donnan-

based models), different from the potential in the macropores by the Donnan potential, ∆φD.52 We 

modify this standard Donnan concept by including a Stern layer between the electrolyte-filled 

micropore volume and the electrically-conducting matrix phase, with a concommitant Stern layer 

voltage, ∆φS. These two potentials together bridge the difference in potential between that in the 

macropore, φ, and that in the electron-conducting matrix, φ1.  

   In this model, the fundamental difference between macro- and micropores is that in the macropores 

local electroneutrality is achieved by balancing ion concentrations only, while in the micropores, 

electrons (and chemical charge) are also included in the local charge balance. This modeling 

approach of considering two different porosities, one in which transport occurs, and the other in which 

EDLs are formed, not only has relevance for porous electrodes, but also for the study of ion transport 

and storage in materials such as porous rocks and clays.  

 
Fig. 1. Schematic representation of our porous electrode theory showing the three relevant length 
scales: left the structure of the complete electrode (a typical thickness is 100 µm-1 mm), middle the 
level of macropores and particles (typically several microns) and right the micropores of nanoscopic 
dimensions. 
 

   The two types of porosities in our model are sketched in Fig. 1: (i) a macroporosity, pmA, due to the 

large pores in between the particles which serve as transport pathways for ion transport, and (ii) a 

microporosity pmi located within the carbon particles. We define pmA and pmi on the total electrode 

volume. The micropores are the pores with sizes of no more than a few nm inside the porous (e.g., 

activated carbon) particles which are often the main constituent of a porous electrode. The 
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macropores (interparticle pore space) are the pathways for ion transport (sizes typically above 1 µm) 

in between the particles where there is ion charge neutrality. It must be noted that formally the 

definition of ‘macropores’ is for pores >50 nm, and micropores for pores <2nm. The bidisperse 

distribution into micro- and macropores is a useful starting point for the description of many electrode 

structures, and has been used previously.5,13,23,41-43,53-55 Transport of ions is assumed to occur only in 

the macropores.  

   Following all prior modeling of porous electrodes, we will not consider surface conductance, which is 

the enhanced ion transport in the diffuse part of the double layer along a charged interface.56 This 

effect can be very important in micro/nanochannels or porous media with `hard’ surfaces of 

approximately constant surface charge density, if double layers have comparable thickness to the 

pores or if the bulk solution becomes strongly depleted.57 It is an open question, however, to quantify 

the importance of surface conductance in a porous electrode consisting of porous particles. 

   In our previous work we considered a monovalent salt solution only, with cations and anions having 

the same diffusion coefficient. Making these assumptions leads to elegant expressions for the salt 

transport and ion current, both at the macroscopic scale of transport across the width of the electrode, 

and on the microscale of transport from macropores into the EDLs/micropores. Therefore, considering 

this idealized system is a useful starting point for the study of the basics of porous electrode transport 

theory.  

   In reality, however, typical electrolytes contain ions of different valencies and mobilities. Therefore in 

the present work, several modifications will be made to the idealized theory of refs. 13 and 40. 

Because we will not consider a binary salt mixture consisting of ions of equal mobility, we will not 

consider a total salt flux at the macroscopic scale, but describe the accumulation and transport of 

each ion separately. This is a general approach which can be used for mixtures of salts with ions of 

unequal valencies and mobilities. A final difference is that we will not consider the microscopic fluxes 

explicitly. This is possible when the assumption of local equilibrium between the macropores and the 

EDLs (the micropores) can be made. Doing so immediately leads to a much more compact model, but 

at the cost of some loss of insight, because the macropores and micropores are immediately lumped 

together.  

 

Theory 

   In this section we describe porous electrode-theory including simultaneously ion transport within the 

macropores of the electrode, charge formation in the micropores within the porous (e.g., carbon) 

particles, and Faradaic charge transfer there. We first present general theory valid in multiple 

dimensions including convective electrolyte transport, but will quickly focus on the one-dimensional 

planar geometry of Fig. 1. Within the macropores in the electrode we assume local ion 

electroneutrality, thus the summation over all ion classes of ion charge times concentration, is zero 

(see Eq. 3 below). Furthermore we assume a much lower resistance for the electrons in the electron-

conducting matrix phase than for the ions in solution, and thus we will consider the matrix phase 

potential, φ1, to be constant across the the electrode (though it will vary in time), i.e., ∇φ1=0 where ∇ 

denotes the gradient-operator. We assume that the ions are ideal point-charges, so that we can use 
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the Nernst-Planck (NP) equation to describe the ion flux as function of both a concentration gradient 

and a migration term due to the electrical field, extended to include convective transport. For transport 

equations in porous media including the effects of ion volume, see ref. 58.  

   Given these assumptions we can implement the extended NP-equation for ion transport in the 

macropores, into a local ion balance (averaged over both macro- and micropores), resulting in 

( ) ( )( ) ( )2
mA mA,i mi mi,i mA i mA,i i mA,i mA,i L,sup i mi Fp c p c p D c zc c p R

t
∂ + = ∇ + ∇ ∇φ − ∇ ⋅ + ν
∂

v  (1) 

where t is time, cmA,i the ion concentration in the macropores, φ the dimensionless macropore 

electrostatic potential scaled to the thermal voltage, VT=kBT/e=RT/F, zi the charge sign of the ion (e.g., 

+1 or -1 for a monovalent cation/anion) and vL,sup is the superficial solution (liquid) velocity in the 

electrode. Subscript “sup” is added to stress that this is a superficial velocity, defined as the total 

solution flow rate per total cross-sectional area. The superficial velocity equals the interstitial velocity 

in the macropores multiplied by the macroporosity, pmA (i.e., the interstitial velocity is higher). The 

diffusion coefficient Di is defined for flow in the macropores, and for very wide macropores it should 

approach the value in free solution. For thinner macropores, a tortuosity correction is required to 

relate Di to the free-solution value, which could be obtained from rigorous bounds or microscopic 

models of diffusion in porous media,59 although here will not focus on microstructural effects and 

consider the effective diffusivities as input parameters to the model. The Faradaic reaction rate, RF, is 

defined as a conversion rate per unit micropore volume, positive in the direction of reduction. When 

the ion is the product of a reduction reaction (i.e., the reductant), then the prefactor νi=+1, and in case 

the ions is being reduced (i.e., the oxidant), νi=-1. 

   In Eq. 1 we include a possible convective flow of electrolyte through the electrode, driven by osmotic 

and hydraulic pressure gradients.58 The effect of a convective flow may be minor or absent for small 

macropores or for solid electrolytes, but is important in flow cells where a pressure gradient is applied 

across or along the cell, especially for electrodes with high macroporosity and consisting of large 

transport pathways, especially in cross-flow operation when the electrolyte is not flowing along the 

electrode but is flowing straight through it.  

   From this point onward we will focus on the one-dimensional geometry as depicted in Fig. 1 and will 

also neglect convective flow, i.e., we set vL,sup=0. In this case, Eq. 1 simplifies to 

( )
2

mA,i
mA mA,i mi mi,i mA i i mA,i i mi F2

d d d
d dd

c
p c p c p D zc p R

t X XX

 ∂ φ + = + + ν   ∂   
 (2) 

where X is a dimensional position coordinate pointing in the direction across the electrode. 

   In the macropores of the electrode there is local ion electroneutrality, as given simply by 

i mA,i
i

0zc =∑ . (3) 

   Though Eqs. 2 and 3 together fully describe transport in the electrode, and thus can be included 

directly in a full porous electrode model, one simplification is very useful as we will explain next. 

Namely, instead of considering Eq. 2 for all ion species, and simultaneously solving Eq. 3, it is helpful 

to directly implement Eq. 3 in Eq. 2. For the specific example of two cations (i=1,2) and one common 

anion (i=3), this results in the following micropore charge balance,  
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( ) ( )
2

mA,imi mA
i i 3 i i 3 i mA,i F2

i=1,2mi

d d d
d dd

cp
z D D zD D zc R

t p X XX

 ∂σ φ = − + + −   ∂   
∑  (4) 

where σmi is the micropore charge density to be discussed below, and where the summation runs over 

the two cations (i=1,2) only, not including the anion (i=3). By implementing Eq. 3 in Eq. 2, the anion 

concentration is removed from the model. Thus, in the model, Eq. 4 is solved together with Eq. 2 

which is evaluated for the two cations only.  

   To describe the ion concentrations in the micropores, i.e., the structure of the electrostatic double 

layer (EDL), we will make use of the modified Donnan (mD) model.13,41,42 The mD-model distinguishes 

between the potential difference between macropore and micropore, i.e., the Donnan potential, ∆φD, 

and the potential across the Stern layer, ∆φS. These two potentials together compensate the potential 

difference between the electrode matrix, φ1, and the macropore solution, φ; thus, 

1 D S∆φ = φ − φ = ∆φ + ∆φ . (5) 

   This simple equation is an essential element of the porous electrode theory, expressing how the 

potential in the macropores, φ, is directly linked to the potential in the electron-conducting matrix 

phase, φ1, at the same location and time, via the local voltage drop across the (two elements of the) 

EDL.  

   The mD-model is based on chemical equilibrium for each of the ion types: equilibrium between the 

macropores and the micropores, resulting in a Boltzmann-distribution (assuming a dilute solution), 

extended to include a non-electrostatic attraction of the ion into the micropore, described by the 

parameter µatt,i, the value of which is generally different for all the ion types. In the Donnan-approach, 

there is a mean, common, electrostatic potential in the micropores, the difference with the potential in 

the macropores, φ, given by the Donnan potential, ∆φD. The concentration of ion type i in the 

micropore volume relates to that in the macropores according to 

( )mi,i mA,i i D att,iexpc c z= ⋅ − ⋅ ∆φ + µ . (6) 

   The micropore volumetric ion charge density, σmi, is given by9,60,61
 

mi i mi,i
i

zcσ =∑ . (7) 

   This ion charge density σmi relates to the voltage drop across the charge-free Stern (“inner” or 

“compact”) layer according to 

mi T St,vol StF V Cσ ⋅ = − ⋅ ⋅ ∆φ  (8) 

where F is Faraday’s constant, and CSt,vol is a volumetric Stern capacity. In refs 41-43 we use a 

modified version of Eq. 8 where CSt,vol has a constant term CSt,vol,0 and a term linear with either ∆φSt
2 or 

with σmi
2, a modification making the Stern capacity increase (lower Stern layer thickness) with 

increasing charge. A dependence of the Stern capacity on charge has been considered before,62,63 

and we have used it to get a better fit to data of salt and charge adsorption in microporous 

carbons.41-43 Without chemical charge (to be discussed below), the ion charge density in the 

micropores is opposite to the electrode charge in the matrix phase, σmi+σelec=0.  

   In the one-dimensional geometry of Fig. 1, the total current density in the cell, I, is equal to the ion 

current density evaluated at the outer electrolyte/electrode interface 
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i i
i

I F zJ= ∑  (9) 

where the ion fluxes, Ji, are given by the Nernst-Planck equation, i
i i i i

d d
d d

c
J D zc

X X
φ = − + 

 
 (in case 

there is no convective contribution). 

   This completes the multi-dimensional dynamic porous electrode theory, except for the formulation of 

the Faradaic electrochemical conversion rate in the micropores, RF, as function of local ion 

concentrations and potentials. We will define RF as a molar production (consumption) rate per unit 

micropore volume. Rate RF is defined positive in the direction of the reduction reaction, which is the 

reaction whereby an electron is transferred from electrode to electrolyte, i.e., the reduction is the 

reaction which is dominant at the cathode. To describe RF, we make use of the generalized Frumkin-

Butler-Volmer equation, which is given for a one-electron reaction by [13,17,18,64-78] 

( ) ( )1 1
2 2F R mi,O St O mi,R Stexp expR K c K c= − ∆φ − ∆φ  (10) 

where we have assumed the transfer coefficients to be αO=αR=½, and where KR and KO are 

volumetric kinetic rate constants for the reduction and oxidation reaction (in s-1), while cmi,O and cmi,R 

are micropore concentrations of the oxidant and reductant. Because in the mD-model we do not have 

gradients in ion concentration across the micropores, the micropore concentration equals the 

concentration at the reaction, or Stern, plane. The ratio KR/KO contains thermodynamic information, 

independent of kinetics. Namely, assuming equilibrium, i.e., RF=0, and after implementing the 

Boltzmann equilibria, cmi,O=cmA,O⋅exp(-zO⋅∆φD+µatt,O) and cmi,R=cmA,R⋅exp(-zR⋅∆φD+µatt,R) (with zR the 

valency of the reductant, and zO that of the oxidant, zO=zR+1), we obtain the Nernst potential, i.e. the 

equilibrium potential difference across the full interface (Donnan plus Stern layer, i.e., from electron-

conducting matrix phase to macropore), ( ) ( )* *
N att,O att,R R mA,O O mA,R R mA,O O mA,Rln / ln /K c K c K c K c∆φ = µ − µ + =  

where ( )*
R R att,OexpK K= ⋅ µ  and ( )*

O O att,RexpK K= ⋅ µ . At kinetic equilibrium, the total voltage drop 

across the interface, ∆φ of Eq. 5, equals the Nernst potential, N∆φ . As reviewed in ref. [75], Eq. (10) 

extends standard descriptions of Faradaic charge transfer in porous electrodes where the charge 

transfer rate depends only on the difference in potential between the conducting matrix and the pore 

solution, ∆φ=φ1-φ (Φ1-Φ2 in the classical terminology) without considering the structure of the double 

layer and changes in the local ion concentration at the reaction plane.  

   The Faradaic rate expression vanishes when the total double-layer voltage ∆φ equals the 

equilibrium Nernst voltage, N∆φ , so it is convenient to introduce the dimensionless “surface” or 

“interfacial” overpotential, Nη = ∆φ − ∆φ , and express the dimensionless Faradaic current in one of 

the two following forms 

( ) ( ) ( ) ( )   = ⋅ −η − ⋅ − ∆φ + ∆φ = ⋅ − η ⋅ − ∆φ − ∆φ   
* *1 1

F O mA,R R D S R mA,O O D S2 2exp 1 exp 1 exp expR K c z K c z . (11) 

   Just as Eq. (10), Eq. 11 is valid only for a one-electron reaction (zO-zR=1). Eq. 11 shows how the 

Faradaic charge transfer depends on 1. the overpotential η, 2. an extra exponent which directly 

depends on the charge (because both ∆φD and ∆φS depend uniquely on charge), and 3. on ion 

concentrations just outside the EDL (i.e., in the macropores). 
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   The first representation of Eq. 11 is useful when the charge of the reductant is zero (zR=0, as for a 

neutral species, formed by reduction of a monovalent cation), leading to 

( ) ( )=  = ⋅ −η − ⋅ ∆φ R

* 1
F, 0 O mA,R S2exp 1 expzR K c  (12) 

just as Eq. 15 in ref. 13. In case a monovalent anion is the reductant, formed by reducing a neutral 

species (zO=0), then Eq. 11 leads to 

( ) ( ) = ⋅ − η ⋅ − ∆φ O

* 1
F, =0 R mA,O S21 exp expzR K c  (13) 

   Both in Eq. 12 as in Eq. 13, the argument in the exponent is (for a constant Stern capacity) directly 

proportional to the (micropore) EDL charge, see Eq. 8. Note that Eqs. 12 and 13 are generally valid, 

irrespective of the ratio of Stern layer to diffuse (Donnan) voltage drop, i.e., generally valid outside the 

Helmholtz- or GC-limits to be discussed next.  

   At this point, it is important to stress that the equations for RF above and below including the 

overpotential η, give the electrode potential ∆φ relative to the kinetic equilibrium value ∆φN at the 

prevailing macropore concentration, which also varies when the system is perturbed from equilibrium 

(i.e., when current flows). Thus, in constructing a theoretical i-V curve where ion transport limitations 

both inside and outside the electrode are considered as well as the overpotential η, a separate 

“concentration overpotential” term must not be forgotten, which is due to the fact that ∆φN is also 

perturbed when the system is no longer at equilibrium and ion concentrations in (or next to) the 

electrode start to change. With initial or equilibrium concentrations at values of, say, c∞,R and c∞,O, the 

shift in ∆φN is ln(c∞,R⋅cmA,O/(c∞,O⋅cmA,R)), the negative of which is the concentration overpotential, an 

extra term to take into account when constructing a theoretical i-V curve. This all goes to show that 

introduction of overpotentials must be done with care and not necessarily simplifies theoretical 

understanding, and that Eq. 10 may be a more unequivocal and robust starting point for the 

construction of a theoretical model where ion transport (and gradients in ion concentration), EDL 

formation and Faradaic charge transfer must all be considered jointly. 

   Next, let us analyze the important Gouy-Chapman (GC) and Helmholz (H) limits of Eq. 11. In the 

GC-limit, where the EDL voltage fully drops over the diffuse (Donnan) part of the EDL, Eq. 11 

becomes 

( ) ( ) ( ) ( )−
 = − − η − − η 

O R* *
F,GC O mA,R R mA,O R Oexp exp

z z
R K c K c z z . (14) 

   Instead, in the H-limit the EDL voltage drops fully over the inner, compact, or Helmholtz-layer, and 

thus the voltage drop across the diffuse (or, Donnan) part of the EDL, ∆φD, is zero. In this case, Eq. 11 

becomes 

( )= − ⋅ η* * 1
F,H R mA,O O mA,R 22 sinhR K c K c  (15) 

irrespective of the value of zO and zR.  

   For zR=0 (and thus zO=1, because only a one-electron reaction is considered), Eq. 14 simplifies to 

Eq. 16a of ref. 13 and Eq. 15 simplifies to Eq. 16b of ref. 13. Note that in ref. 13 it is assumed that the 

reduced species plates out of solution and thus has an unvarying chemical potential, so there cmA,R 

was lumped with KO to a constant parameter JO. 
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   It is important to stress that both the GC- and H-limits must be used with great care in modeling 

because both make unphysical assumptions, and additionally can be numerically problematic. 

Instead, a physically realistic and numerically robust theory should consider the general intermediate 

case in between either of these limits, as given by Eqs. 10-13. What is so problematic about these 

limits? First of all, the GC-limit (Eq. 15) is flawed because there is no possibility to enhance the kinetic 

rate via the Stern layer voltage ∆φS and thus at already moderate values of the current, potentials 

across a cell can go to infinity (see ref. 75, fig. 7a,b). Since the Stern-layer voltage is related to the 

normal electric field at the interface, the GC-limit is unphysical because it neglects the influence of the 

local electric field on electron transfer reactions, although in some cases this could be a reasonable 

approximation. The H-limit (Eq. 14) is problematic for a very different reason. Because there is no 

diffuse charge in the H-limit, there can be no capacitive storage of charge or salt. Ion storage in the 

double layer can only be included ad-hoc by invoking a proportional relationship between Stern layer 

voltage drop (which is the total interfacial voltage drop in the H-limit) and charge. To model ion 

adsorption (as for desalination), this charge is then equated to the counterion adsorption (neglecting 

coion depletion). We stress that these are ad-hoc additions to the theory and do not follow as a 

natural limit of common double layer models such as the Gouy-Chapman-Stern approach, or a 

(modified) Donnan approach.  

   In summary, formulae 10-13 express the generalized Frumkin-Bulter-Volmer model for 

electrochemical reaction kinetics in the case of symmetric electron transfer (α=½), and a one-electron 

reaction, and show that outside the H- and GC-limits, the reaction rate depends not only on the 

overpotential, but also on the micropore charge density, σmi. An important difference with most prior 

theories is that σmi is not an arbitrary fitting parameter, but instead is determined self-consistently from 

the full model, and thus depends on all chemical and process parameters such as the current density, 

diffusion coefficients, and bulk salt concentration. 

   Eqs. 10-13 highlight the role of the EDL-charge in determining the Faradaic charge transfer rate.79 

This charge automatically develops when a Faradaic reaction takes place, but the charge may be 

further enhanced by other factors. One important such factor is chemical surface ionization, also 

called (surface) charge regulation. For instance, porous carbons may acquire carboxylic (acidic, 

-COOH) groups which may deprotonate to give a negative chemical charge. To determine the role of 

the chemical charge in the charge transfer rate, it is important to establish whether the chemical 

charge is located at the Stern plane (in colloid-chemical terms this is the outer Helmholtz plane) or at 

the carbon surface proper (the “0”-plane). Let us assume that we can assign the carboxylic surface 

charge to the “0”-plane, in which case the corresponding Langmuir adsorption isotherm would be49 

D S mA 1mA

COOH COOH
0 - - pK-pH -pK-pH 1+101+10

C C
ee ∆φ ∆φ φ φσ = − = −

   
  (16) 

where CCOOH is the total number of carboxylic groups (deprotonated or not) per unit micropore volume, 

where pK is the intrinsic pK-value of (de-)protonation of the –COOH group, typically pK 4-5 for 

carboxylic groups, and where pHmA is the pH in the macropores adjacent to the micropores. To 

calculate pHmA, transport of protons and hydroxyl ions from bulk solution into the electrode must be 

considered.80,81 However, when there is no proton/hydroxyl ion transport, as in the steady-state, and 
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in case there is no role for protons in the charge-transfer reaction, then pHmA=pH∞+φ/ln10 with φ (as 

throughout this work) the potential in the macropores (and in the SDL). Thus we arrive at  

1

COOH
0 pK-pH -1+10

C
e∞ φσ = −  (17) 

which will be used for the calculations presented in Fig. 2b. 

   Given a certain value for the diffuse ion charge in the micropores, σmi, and with the chemical charge 

located in the “0”-plane, the value of σ0 will not directly influence the Faradaic charge transfer rate 

across the Stern layer. Only when chemical charge is located in the Stern plane (thus at the same 

side of the Stern layer as the ion charge, σmi), will it influence ∆φS and thus directly influence the 

charge transfer rate. Still, chemical charge will always influence the Faradaic reaction rate in an 

indirect way, because it will influence σmi via the local electroneutrality balance 

mi 0 elec 0σ + σ + σ = . (18) 

   Thus, when chemical charge is present in the “0”-plane, it will not directly modify Eq. (10), but it will 

still influence the behavior of the system indirectly. Note that when the value of the chemical charge 

depends on local pH, and thus will change in time as long as steady-state has not yet been reached, 

there is capacitive ad-/desorption of protons as chemical charge in the micropores, and thus proton 

transport must be considered in the flux equations through the electrode, because it influences the 

transport of other cations and anions. These effects are not considered in our present work, but see 

ref. 81 for proton transport in electrodialysis membranes and ref. 82 for such an analysis for transport 

in bentonite (a type of clay).  

 

Calculation Results 

   In this section we will present results of example calculations in which we assume a one-

dimensional geometry of an electrode of area A open on one side to outer electrolyte, and blocking for 

all ions on the other side, see Fig. 1. We consider divalent cations as oxidant which reduce to 

monovalent cations. The monovalent anion is inert, i.e., does not react at the electrode. We neglect 

convective flow (i.e., vL=0). We show results for the development of profiles of ion concentration and 

macropore potential across the electrode after suddenly perturbing the electrode away from 

equilibrium. Equilibrium implies that initially all ion concentration gradients, both in the micropores and 

in the macropores, are all equal to zero, and all ion fluxes and currents are therefore zero as well. At 

equilibrium, the potential φ in the macropores (transport pathways) is equal to that in the outside 

electrolyte (SDL), which initially is equal to zero. The potential in the micropores is higher by the 

Donnan potential, ∆φD. The potential of the electrode matrix is given initially by φ1,ini=∆φN.  

     From time zero onward, either a current is applied to the electrode, or the voltage in the electrode 

matrix, φ1, is perturbed from the initial, equilibrium, value of φ1,ini, or a more complex relation between 

these parameters is imposed (possibly involving time). In the present work a power source applies 

from time zero onward a fixed external current density Iext (defined as current per unit electrode area 

in the direction out of the electrode under study). Because of the presence of an external linear 

capacitor, Cext, in parallel with the porous electrode, the current density out of the electrode I will 

increase in time from zero to the final value of Iext, as described by 
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ext1
T

ext

I I
V

t C

−∂φ
= −

∂
   (19) 

where it is assumed that the voltage across the external capacitor is VT times φ1-φ∞ where φ∞ is the 

potential in the bulk of the outer electrolyte (see Fig. 1) which we set to zero, i.e., φ∞=0, as if the 

counterelectrode has negligible overpotential. 

   We describe ion flow outside the electrode by the well-known concept of a Nernst diffusion film, or 

stagnant diffusion layer. We will use the abbrevation SDL as in our previous work. The theoretical 

concept of such a stagnant film of a certain thickness is a classical concept and often applied. Here 

we use it as an example boundary condition. Other options, such as fully resolving the flow field 

outside the electrode78,83-85 is an elegant option for millifluidic flow cells, but to describe such a cell in 

detail, a two-dimensional model must be set up, which is numerically more complex and goes beyond 

the objective of the present work. The SDL can be described by the same equations as for the porous 

electrode, with cmA,i replaced by ion concentration ci, with pmi set to zero and pmA set to unity. 

Equations for the micropore charge (transfer), σmi and RF, are of course not solved in the SDL. At the 

outer edge of the SDL we set φ=0, while at the inner edge (where it contacts the electrode), the 

potential φ is continuous, and ci equals cmA,i. For all species the fluxes are equal at the boundary, 

which implies that the gradients in potential and in each of the ion concentrations are continuous, 

except for a term 1/pmA by which these gradients are higher in the electrode (at the edge with the 

SDL). 

   At the inner edge of the electrode (the metal, or graphite, “backing plate”) where X=Lelectrode, we 

have mA,id / d 0c X =
 
for all ion types. This assumption can be made when the porous electrode is 

backed by an electrolyte-impermeable layer which conducts the electronic charge out of the electrode 

(“current collector”), and  can also be used as a symmetry boundary condition in case the electrode 

has thickness 2⋅Lelectrode and ions are allowed to enter and leave the electrode from both sides. 

   The steady state is easier to analyze than the fully dynamical situation because in Eq. 2 the left-

hand side can then be set to zero, while Eq. 4 can be replaced by the fact that in the steady state the 

inert anion has a zero flux, thus is at Boltzmann equilibrium and thus we have, both in the SDL and in 

the macropores, the simple relationship c3=Σi=1,2(zi⋅ci) =c∞,3⋅exp(φ), because in bulk (∞, outside the 

SDL) we have set φ∞=0.  

   We make a calculation for the following parameter settings. Ion type 1 is the divalent cation to be 

reduced to the monovalent cation 2, while 3 denotes the inert monovalent anion. The electrode 

thickness is Lelectrode=LSDL=100 µm, and macro- and microporosity are pmA=pmi=0.30. The chemical 

attraction terms will generally be different for different ions,86 but for simplicity here we take them at 

the same value: µatt,1=µatt,2=µatt,3=1.5 kT. The diffusion coefficients are D1=0.792, D2=1.33 and 

D3=2.03⋅10-9 m2/s (example numbers based on Ca2+, Na+ and Cl-), while z1=+2, z2=+1, z3=-1, ν1=-1, 

ν2=+1, and ν3=0. The maximum chemical charge is CCOOH=100 mM. In bulk solution (outside the 

SDL), we have c∞,1=1 mM O2+, c∞,2=1 mM R+, and c∞,3=3 mM. The Faradaic kinetic rate constants are 

as follows. In all calculations, KO=1.33⋅10-2 s-1. In Fig. 2 KR=KO=1.33⋅10-2 s-1 and thus ∆φN=0. In Figs. 
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3-5, KR=1.33⋅10-4 s-1 and thus ∆φN=6.90. The volumetric Stern capacity is set to CSt,vol=100 kF/m3 

(based on refs. 41-43). The external capacity is Cext=29.4 F/m2. 

   First we show in Fig. 2 steady-state profiles for various discrete values of the applied current as 

function of dimensionless position x=X/Lelectrode, which runs from -1 to 0 for the SDL, and from 0 to 1 

for the electrode. Fig. 2a shows the macropore concentration of the oxidant, O2+ and the reductant R+. 

As the electrical current into the electrode is negative (electrons are pushed into the electrode), the 

net reaction is a reduction of O2+ to R+ where an electron transfers from the electrode into the 

electrolyte. Thus, the oxidant is electro-diffusing into the electrode, and the reductant is 

simultaneously electro-diffusing out of the electrode. Only in the steady-state is (at each position) the 

flux of the one ion equal in magnitude (and opposite in sign) to that of the other. Note that the profiles 

for concentration in the SDL are not linear, as classical theory might indicate, because here we have a 

mixture of ions of different valency and mobility. We tested the SDL model against the analytical 

solution for the steady-state in case O2+ and R+ have the same diffusion coefficient, D (analytical 

solutions for the general case of unequal diffusion coefficients are given by Schlögl87 and Oren and 

Litan88). The analytical result for equal values of D is as follows. First of all, in the SDL the gradient in 

O2+-concentration is always -2/3rd that of the gradient in the R+-concentration; consequently, with 

concentrations at the start of the SDL given by [O]0 and [R]0, concentrations in the SDL, [O] and [R], 

are related by 2⋅([R]-[R]0)=-3⋅([O]-[O]0) [ref. 88, Eq. A5]. This results in the following implicit equation 

for the SDL-concentration profile of the oxidant,  

( ) ( )
0

0
00

0

1 / 3 2 ln
O

J x D O O
O

ω +   − ⋅ + = ⋅ − − ω ⋅       ω +   
 (20) 

where 0

0 0
3 2O Rω = ⋅ + ⋅      

 
and where J is the flux of the oxidant ion into the electrode (note, for the 

SDL, x runs from x=-1 to x=0 at the interface with the electrode). As this equation shows, there is no 

linear profile in the SDL for the ion concentrations, not even in case of equal diffusion coefficients. The 

profile for potential φ in the SDL is given by 
0 0

2d
ln

d 2

O R

x O R

⋅ +   φ    =
⋅ +      

  which shows that when the 

limiting current is reached where [O] becomes zero at the at the SDL/electrode edge (x=0), that still 

the potential φ in the SDL does not go to minus infinity (as it would in the classical situation of a 

monovalent salt solution near a partially selective interface), but has only decreased quite moderately 

across the SDL. 

   As shown in Fig. 2a, the oxidant depletion increases the deeper we go into the electrode and 

increases with current. The limiting current which is a result of this depletion is discussed in more 

detail in Fig. 3.  

   But first let us briefly touch upon the electrode charge, and the effect of current on the chemical 

charge. Fig. 2b shows the micropore charge density, σmi, as solid lines for the four currents analyzed 

in Fig. 2a. Denoted by diamonds is the total charge, σmi+σ0=-σe in case chemical charge, σ0, is 

included using Eq. 17 for carboxylic acid surface groups (pK-pH∞=0). As Fig. 2b shows, the chemical 

charge is a function of the current, because high currents (directed out of the electrode) lead to 

negative values of the matrix potential φ1 relative to the outside solution, thus to a low pH (high proton 
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concentration) and thus to protonation (discharging) of the carboxylic groups. Thus we have here an 

example of "current-induced charge regulation," a variation of the charge regulation obtained when 

the external voltage is changed in a microtransistor (without current), called "static field-induced 

charge regulation," see refs. 89,90.  
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Fig. 2. (a) Steady-state profiles of the concentration of oxidant and reductant diffusing through a 
Nernst diffusion film (or, stagnant diffusion layer, SDL) and (partially) through the macropores inside a 
porous electrode, at various values of the current. (b) Steady-state distribution of micropore ion 
charge. Diamonds show the micropore ion charge + chemical charge (i.e., together equal to minus the 
electrical charge). 
 

   Because the chemical charge is different for different currents, it will be the case that when the 

current changes, the proton adsorption degree will change and protons will start diffusing in/out of the 

electrode, thereby influencing the ion transport of the other ions. This effect of current-induced charge 

regulation on the dynamics of transport of other ions [which does not need to be considered in Fig. 2b, 

because here only the steady-state is analyzed], may have general importance when dynamic 

experiments are conducted using (porous) electrodes.  

-15

-10

-5

0

5

0 0.5 1 1.5

φ 1
,s

te
ad

y-
st

at
e

Current Iext (A/m2)

∆φN

O2+→R+ 

O+→R

  
Fig. 3. Steady-state i-V curves for single porous electrode, both for the one-electron reduction of a 
divalent oxidant (O2+→R+), and for the case of a monovalent oxidant (O+→R). 
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   Next we present for the steady-state, as function of current I the summed voltage drop across EDL, 

macropores and SDL, i.e., the total electrode voltage drop, see Fig. 3. As Fig. 3 (the single-electrode 

“i-V curve”) shows, even upon imposing a tiny current, immediately the system moves away from the 

ideal Nernst equilibrium value, ∆φN, (upper left corner). After an approximately linear decay of 

φ1,steady-state, we rapidly go into the limiting current-regime, where a further increase in current cannot 

be sustained and the voltage diverges. For comparison (and check of our numerical code) we also 

present results for the situation that the oxidant is monovalent and reduces to a neutral product. A 

difference with ref. 13 where the same reaction (O+→R) was considered, is that now the reductant 

must diffuse out of the electrode instead of plating out as a noncharged metal ion. 

   Having discussed the steady-state, we now give some example results for the dynamic approach to 

the steady state. Because ∆φN is positive, initially (at equilibrium) the micropore charge will be 

negative, see conditions at time zero in Fig. 5. At time zero, throughout the macropores the 

concentration of R+ and O2+ is at the equilibrium value of 1 mM, while inside the micropores the 

concentrations are 0.482 mM for R+ and 0.052 mM for O2+ (and 42 mM for the anion). Upon enforcing 

a current out of the electrode of Iext=0.6 A/m2, i.e., electrons are pushed into the electrode, we observe 

several unexpected phenomena. First of all, we see that initially both the concentrations of R+ and O2+ 

go up in the macropores, see Fig. 4. Secondly, in the SDL concentrations gradients are positive 

toward the electrode both for O2+ and R+, suggesting that both these ions diffuse out of the electrode. 

However, it is the other way around: the voltage gradients [not plotted] are such (namely decreasing 

toward the electrode) that both R+ and O2+ initially move from solution into the electrode, both into the 

macropores where the concentration increases from 1 mM to the values as shown in Fig. 4, and into 

the micropores, where the concentrations increase to values between 24 mM (at x=0) to 50 mM (at 

x=1) for R+, and between 21 mM (at x=0) to 0.19 mM (at x=1) for O2+. So first both cationic species 

move into the electrode, and only beyond time t~500 s the direction of transport for the reductant R+ 

reverses sign and R+ starts to electro-diffuse out of the electrode.  
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Fig. 4. Concentrations of O2+ and R+ in SDL and in macropores, as function of time after enforcing a 
current Iext=0.6 A/m2 out of the electrode. For the oxidant (panel left) concentrations first go up, level 
off, before coming down to settle in the steady-state.  
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   Results of Fig. 4 are plotted again in Fig. 5, but only for the position deepest within the electrode 

(x=1). Here we see that the micropore charge density steadily increases in time after the current is 

enforced, going from negative to positive. Macropore concentrations of both ions rapidly go from 1 

mM initially, to values 10 % and 20% higher for for R+ and O2+, respectively. For some time the 

concentrations do not change until from t~500 s the rate of change increases again and the two 

concentrations move to their steady-state values. In summary, this highly non-linear behavior as 

shown in Fig. 4 and Fig. 5 highlights how non-intuitive the behavior of reactive ion mixtures in porous 

electrodes may be. Naive interpretation of dynamic experiments in terms of linear elements may 

easily give erroneous results.  
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Fig. 5. Time-dependence of micropore charge and macropore concentration of oxidant and reductant 
at innermost position in the electrode (where x=1). Parameter settings of Fig. 4 
 

Conclusions 

   We have presented generalized porous electrode theory for electrolyte with mobile ions of both 

charge signs, considering simultaneously electro-diffusion, capacitive charging, salt storage and 

electrochemical charge transfer. We consider a realistic porous electrode structure consisting of a 

bimodal size distribution of pores (both filled with electrolyte): the macropores which serve as 

transport pathways for the ions, and the micropores where ions are stored together with electronic 

charge and where electrons are electrochemically transferred from electrode to electrolyte and vice-

versa. We have presented calculation results both for the dynamic development of ion concentrations 

in the macropores in the porous electrode, as well as results of steady-state profiles. The example 

calculation considers the presence in front of the electrode of a Nernst layer, or stagnant diffusion 

layer, of constant thickness, through which ions must electro-diffuse, and assumes that the divalent 

oxidant ion reduces by a one-electron reaction within the micropores inside the electrode. Dependent 

on the value of the equilibrium Nernst potential, it is possible that upon forcing a current into the 

electrode, ion concentration profiles first go up, level off for some time before dropping significantly to 
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the steady-state value. This example shows how counter-intuitive the dynamics of charging and 

electrochemistry in porous electrodes may be, and serves as a warning for oversimplistic modeling of 

porous electrodes based on linear circuit elements. 
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