CDI&E publications 2020

Ahn, J., Lee, J., Kim, S., Kim, C., Lee, J., Biesheuvel, P. M., & Yoon, J. (2020). High performance electrochemical saline water desalination using silver and silver-chloride electrodes. Desalination, 476, 114216. https://doi.org/10.1016/j.desal.2019.114216 [direct link to pdf]

Hand, S., Guest, J. S., & Cusick, R. D. (2019). Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. Environmental Science & Technology, 53, 13353–13363. https://doi.org/10.1021/acs.est.9b04347

Kim, K., Cotty, S., Elbert, J., Chen, R., Hou, C., & Su, X. (2020). Asymmetric Redox‐Polymer Interfaces for Electrochemical Reactive Separations: Synergistic Capture and Conversion of Arsenic. Advanced Materials, 1906877. https://doi.org/10.1002/adma.201906877

Patel, S.K., Qin, M., Walker, W.S. & Elimelech, M. (2020). Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization. Environmental Science & Technology, 54, 3663-3677. https://doi.org/10.1021/acs.est.9b07482

Porada, S., Zhang, L. & Dykstra, J.E. (2020). Energy consumption in membrane capacitive deionization and comparison with reverse osmosis. Desalination, 488, 114383. https://doi.org/10.1016/j.desal.2020.114383 OPEN ACCESS

Cuong, D. V., Wu, P.-C., Liu, N.-L., & Hou, C.-H. (2020). Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions. Separation and Purification Technology, 242, 116813. https://doi.org/10.1016/j.seppur.2020.116813

Hong, S. P., Yoon, H., Lee, J., Kim, C., Kim, S., Lee, J., … Yoon, J. (2020). Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. Journal of Colloid and Interface Science, 564, 1–7. https://doi.org/10.1016/j.jcis.2019.12.068

Jo, K., Baek, Y., Kim, S., Hong, S. P., & Yoon, J. (2020). Evaluation of long-term stability in capacitive deionization using activated carbon electrodes coated with ion exchange polymers. Korean Journal of Chemical Engineering, 37, 1199–1205. https://doi.org/10.1007/s11814-020-0530-5

Joo, H., Jung, S. Y., Kim, S., Ahn, K. H., Ryoo, W. S., & Yoon, J. (2020). Application of a Flow-Type Electrochemical Lithium Recovery System with λ-MnO 2 /LiMn 2 O 4 : Experiment and Simulation. ACS Sustainable Chemistry & Engineering, 8, 9622–9631. https://doi.org/10.1021/acssuschemeng.9b07427

Joo, H., Kim, S., Kim, S., Choi, M., Kim, S.-H., & Yoon, J. (2020). Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate. Environmental Science: Water Research & Technology, 6, 290–295. https://doi.org/10.1039/C9EW00756C

Joo, H., Lee, J., & Yoon, J. (2020). Short Review: Timeline of the Electrochemical Lithium Recovery System Using the Spinel LiMn2O4 as a Positive Electrode. Energies, 13, 6235. https://doi.org/10.3390/en13236235

Kim, N., Lee, J., Hong, S. P., Lee, C., Kim, C., & Yoon, J. (2020). Performance analysis of the multi-channel membrane capacitive deionization with porous carbon electrode stacks. Desalination, 479, 114315. https://doi.org/10.1016/j.desal.2020.114315

Kim, N., Lee, J., Kim, S., Hong, S. P., Lee, C., Yoon, J., & Kim, C. (2020). Short Review of Multichannel Membrane Capacitive Deionization: Principle, Current Status, and Future Prospect. Applied Sciences, 10, 683. https://doi.org/10.3390/app10020683

Kim, S., Kang, J. S., Joo, H., Sung, Y.-E., & Yoon, J. (2020). Understanding the Behaviors of λ-MnO 2 in Electrochemical Lithium Recovery: Key Limiting Factors and a Route to the Enhanced Performance.Environmental Science & Technology, 54, 9044–9051. https://doi.org/10.1021/acs.est.9b07646

Lee, J., Kim, S., Kim, N., Kim, C., & Yoon, J. (2020). Enhancing the Desalination Performance of Capacitive Deionization Using a Layered Double Hydroxide Coated Activated Carbon Electrode. Applied Sciences, 10, 403. https://doi.org/10.3390/app10010403

Li, Y., Ding, Z., Li, J., Wang, K., Lu, T., & Pan, L. (2020). Novel membrane-free hybrid capacitive deionization with a radical polymer anode for stable desalination. Desalination, 481, 114379. https://doi.org/10.1016/j.desal.2020.114379

Liu, N.-L., Chen, L.-I., Tsai, S.-W., & Hou, C.-H. (2020). Enhanced desalination of electrospun activated carbon fibers with controlled pore structures in the electrosorption process. Environmental Science: Water Research & Technology, 6, 312–320. https://doi.org/10.1039/C9EW00751B

Liu, Y., Gao, X., Wang, K., Dou, X., Zhu, H., Yuan, X., & Pan, L. (2020). Rocking-chair capacitive deionization with flow-through electrodes. Journal of Materials Chemistry A, 8, 8476–8484. https://doi.org/10.1039/C9TA14112J

Liu, Y., Zhang, Y., Zhang, Y., Zhang, Q., Gao, X., Dou, X., … Pan, L. (2020). MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. Journal of Materials Chemistry A, 8, 1443–1450. https://doi.org/10.1039/C9TA11537D

Lu, T., Xu, X., Zhang, S., Pan, L., Wang, Y., Alshehri, S. M., … Yamauchi, Y. (2020). High-Performance Capacitive Deionization by Lignocellulose-Derived Eco-Friendly Porous Carbon Materials. Bulletin of the Chemical Society of Japan, 93, 1014–1019. https://doi.org/10.1246/bcsj.20200055

Shocron, A. N., & Suss, M. E. (2020). Should we pose a closure problem for capacitive charging of porous electrodes? EPL (Europhysics Letters), 130, 34003. https://doi.org/10.1209/0295-5075/130/34003

Xu, X., Tang, J., Kaneti, Y. V., Tan, H., Chen, T., Pan, L., … Yamauchi, Y. (2020). Unprecedented capacitive deionization performance of interconnected iron–nitrogen-doped carbon tubes in oxygenated saline water. Materials Horizons, 7, 1404–1412. https://doi.org/10.1039/C9MH01829H

Xu, X., Yang, T., Zhang, Q., Xia, W., Ding, Z., Eid, K., … Yamauchi, Y. (2020). Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chemical Engineering Journal, 390, 124493. https://doi.org/10.1016/j.cej.2020.124493

Xu, X., Zhang, S., Tang, J., Pan, L., Eguchi, M., Na, J., & Yamauchi, Y. (2020). Nitrogen-doped nanostructured carbons: A new material horizon for water desalination by capacitive deionization. EnergyChem, 2, 100043. https://doi.org/10.1016/j.enchem.2020.100043